joi, 31 martie 2016

WHEN THE SOMATORY OF ALL COEFFICIENTS OF CONTRACTION TENDS TO INFINITY YOU HAVE A PONTUAL UNIVERSE -the expansion of the universe started to accelerate recently (meaning a few billion ...BUT IS ONLY A PONTUAL MEMENTO MORI OF ALL UNIVERSES THE SOMATORY OF ALL EXPANSION IS BIGGER THAN ALL THEPONTUAL CONTRACTIONS IN THE FORM OF BLACK HOLES AND OTHER ASS HOLES DA GAMMA RAY ..... Homogeneity requires the proportionality coefficient to be only a function of time.

Expansion of the Universe One of the main goals of cosmology is to figure out how the universe expands as a function of time. 1.1 Expansion and Conservation To describe the evolution of the average universe, one needs only two kinds of equations: 1. The equation that relates the density and pressure of constituents of the universe (such as baryons, cold dark matter, photons, neutrinos, dark energy) to the expansion of the universe, and 2. The equation that describes the energy conservation of the constituents. Consider a line connecting two arbitrary points in space (which is expanding), and call it L. As the universe expands, L changes with time. As you will derive in homework using 
General Relativity, the equation of motion for L is given by 
L¨(t) = − 4πG 3 L(t) X i [ρi(t) + 3Pi(t)] , 

(1.1) where ρi(t) and Pi(t) are the energy and pressure of the ith component of the universe, respectively. Here, note that the absolute value of L does not affect the equation of motion for L. Therefore, one may define a dimensionless “scale factor,” a(t), such that L(t) ≡ a(t)x, where x is a timeindependent separation called a “comoving” separation, which is in units of length. In cosmology, 1 we often encounter the Hubble expansion rate, H(t), which is defined by H(t) ≡ a˙(t) a(t) . (1.2) The dimension of this quantity is 1/(time). The age of the universe can be calculated from the above definition of H, which gives H(t)dt = da/a. Now, if we know H as a function of a instead of t, we obtain t = Z da aH(a) . (1.3) Another interpretation of H is found by writing L˙(t) = H(t)L(t), which tells us that H(t) gives a relation between the distance, L, and the recession velocity, L˙ . For this reason, it is often convenient to write H(t) in the following peculiar units: H(t) = 100 h(t) km/s/Mpc, where h is a dimensionless quantity. The current observations suggest that the present-day value of h is h(ttoday) ≈ 0.7.∗ Dividing both sides of equation (1.1) by L and using L(t) = a(t)x, we find one of the key equations connecting the energy density and pressure to the expansion of the universe: a¨(t) a(t) = − 4πG 3 X i [ρi(t) + 3Pi(t)] (1.4) As expected, positive energy density and positive pressure slow down the expansion of the universe.† This equation cannot be solved unless we know how ρi and Pi depend on time. How ρi depends on time is given by the energy conservation equation, while how Pi depends on time is usually given by the equation of state relating Pi to ρi and other quantities. As you will derive in homework, the energy conservation equation is given by X i ρ˙i(t) + 3a˙(t) a(t) X i [ρi(t) + Pi(t)] = 0 (1.5) Equation (1.5) is general and does not assume presence or absence of possible interactions between different components. If we assume that each component is conserved separately, then we have ρ˙i(t) + 3a˙(t) a(t) [ρi(t) + Pi(t)] = 0, (1.6) ∗The most precise value of h(ttoday) to date from the direct measurement using low-z supernovae and Cepheid variable stars is h(ttoday) = 0.742 ± 0.036 (Riess, Macri, et al., ApJ, 699, 539 (2009)). † If we ignore the effect of pressure relative to that of the energy density (which is always a good approximation for non-relativistic matter), and write ρ(t) in terms of the total mass enclosed with a radius L, P i ρi(t) = 3M 4πL3 , then equation (1.1) becomes L¨ = − GM L2 , which is the familiar Newtonian inverse-square law. Although one must not apply the Newtonian mechanics to describe the evolution of space (because Newtonian mechanism assumes static space), this is a convenient way to understand equations (1.1) and (1.4)for each of the ith component. Note that the second term contains the pressure, and thus how the energy density evolves depends on the pressure.‡ Looking at equations (1.4) and (1.5), one might think that we cannot solve for a(t) unless we have the equation of state giving Pi(t) as a function of ρi(t) etc. While in general that would be true, for these equations a little mathematical trick lets us combine equations (1.4) and (1.5) without knowing the evolution of P(t)! First, rewrite equation (1.4) as a¨(t) a(t) = 8πG 3 X i ρi(t) − 4πGX i [ρi(t) + Pi(t)] . (1.7) Using equation (1.5) on the second term of the right hand side, we get a¨(t) a(t) = 8πG 3 X i ρi(t) + 4πG 3 a(t) a˙(t) X i ρ˙i(t) a˙(t)¨a(t) = 8πGa(t)˙a(t) 3 X i ρi(t) + 4πGa2 (t) 3 X i ρ˙i(t) 1 2 (˙a 2 ) · = 4πG(a 2 ) · 3 X i ρi(t) + 4πGa2 (t) 3 X i ρ˙i(t). (1.8) As this has the form of A˙ = BC˙ + BC˙ = (BC) · , it is easy to integrate and obtain: a˙ 2 (t) = 8πGa2 (t) 3 X i ρi(t) − κ, (1.9) where κ is an integration constant, which is in units of 1/(time)2 . (A negative sign is for a historical reason.) Dividing both sides by a 2 (t), we finally arrive at the so-called Friedmann equation: a˙ 2 (t) a 2(t) = 8πG 3 X i ρi(t) − κ a 2(t) . (1.10) ‡While it is a wrong explanation, it is useful to compare this equation to the first law of thermodynamics: T dS = dU + P dV, where T, S, U, and V are the temperature, entropy, internal energy, and volume, respectively. To a very good accuracy, the entropy is conserved in the universe, dS = 0. The internal energy is U ∝ ρa3 and the volume is V ∝ a 3 , and thus d(ρa 3 ) + P d(a 3 ) = 0, which gives ρ˙ + 3a˙ a (ρ + P) = 0. This is a wrong explanation because it assumes that the pressure is doing work as a increases. However, in the average universe, the pressure is the same everywhere, and thus there is no under-pressure region against which the pressure can do work. Equation (1.5) must be derived using GR, which you will do in homework, but the above thermodynamic argument is an amusing way to arrive at the same equation. Also, this gives us some confidence that it is not crazy to think that the evolution of ρ depends on P. 3 A beauty of this equation is that it is easy to solve, once a time dependence of ρi(t) is known, which is usually the case. General Relativity tells us that the integration constant, κ, is equal to ±c 2/R2 where R is the curvature radius of the universe (in units of length) and c the speed of light. When the geometry of the universe is flat (as suggested by observations), R → ∞ (giving κ → 0), and thus one can ignore this term. Since we have so much to learn, to save time we will not consider the curvature of the universe throughout (most of) this lecture: a˙ 2 (t) a 2(t) = 8πG 3 X i ρi(t) (1.11) 1.2 Solutions of Friedmann Equation In order to use solve equation (1.11) for a(t), one must know how ρi(t) depends on time. To find solutions for a(t), let us first assume that the universe is dominated by one energy component at a time, i.e., a˙ 2 (t) a 2(t) = 8πG 3 X i ρi(t) ≈ 8πG 3 ρi(t), (1.12) and further assume that ρi depends on a(t) via a power-law: ρi(t) ∝ 1 a ni (t) . (1.13) 4 Finding the solution is straightforward: a(t) ∝ t 2/ni . (1.14) This is usually an excellent approximation, except for the transition era where two energy components are equally important. There are 3 important cases: 1. Radiation-dominated (RD) era. A radiation component (photons, massless neutrinos, or any other massless particles) has a large pressure, PR = ρR/3,§ which gives ρR(t) ∝ 1/a4 (t), or nR = 4. We thus obtain aRD(t) ∝ t 1/2 . (1.15) The expansion of the universe decelerates. With this solution, we can relate the age of the universe to the Hubble expansion rate: H(t) = a˙(t) a(t) = 1 2t . (1.16) 2. Matter-dominated (MD) era. A matter component (baryons, cold dark matter, or any other non-relativistic particles) has a negligible pressure compared to its energy density, PM ρM, which gives ρM(t) ∝ 1/a3 (t), or nM = 3. We thus obtain aMD(t) ∝ t 2/3 . (1.17) §Again, a “wrong” derivation, but there is an intuitive way to get this result using the equation of state for non-relativistic ideal gas (this is obviously a wrong derivation because we are about to apply non-relativistic equation of state to relativistic gas!): P = nkBT = ρ kBT hEi , where n is the number density, T the temperature of gas, kB the Boltzmann constant, and hEi the mean energy per particle. For relativistic particles in thermal equilibrium, hEi ≈ 3kBT, which gives P ≈ ρ/3. Now, actually, it turns out that the error we are making by using non-relativistic equation of state for relativistic gas cancels out precisely the error we are making by using an approximate relation hEi ≈ 3kBT. This gives us the exact relation, P = ρ/3 for relativistic particles. More precisely, the equation of state for relativistic gas takes on the form P = (1 + )ρ kBT hEi with hEi = 3(1 + )kBT, giving P = ρ/3. Here, ' 0.05 and −0.10 for Fermions and Bosons, respectively. 5 The expansion of the universe decelerates. With this solution, we can relate the age of the universe to the Hubble expansion rate: H(t) = a˙(t) a(t) = 2 3t . (1.18) 3. Constant-energy-density-dominated (ΛD) era. A hypothetical energy component (let’s call it Λ) whose energy density is a constant over time, nΛ = 0. In this case we cannot use equation (1.14). Going back to equation (1.12) and setting ρΛ = constant, we get ˙a/a = constant, whose solution is aΛD(t) ∝ e Ht , (1.19) where an integration constant, H, is the same as the Hubble expansion rate (which is a constant for this model). The expansion of the universe accelerates, which must mean that, according to the acceleration equation (1.4), the pressure of this energy component is negative. The conservation equation (1.5) tells us that such a component indeed has an enormous negative pressure given by PΛ = −ρΛ. (1.20) While this looks quite strange, we now know that something like this may actually exist in our universe, as the current observations suggest that the present-day universe is indeed accelerating. 6 1.3 Equation of State of “Dark Energy” and Density Parameters The matter has PM ρM; the radiation has PR = ρR/3; and Λ has PΛ = −ρΛ. This motivates our writing the equation of state of the ith component in the following simple form: Pi = wiρi . (1.21) Here, wi is called the “equation of state parameter,” and can depend on time (although it is usually taken to be constant). Why this form? It is important to keep in mind that there is no fundamental reason why we should use this form. This form is often used either just for convenience, or simply for parametrizing something we do not know. At the very least, this form is exact for radiation, wR = 1/3, and for Λ, wΛ = −1. For matter, since wM 1, the exact value does not affect the results very much. The equation of state parameter is almost exclusively used for parametrizing “dark energy,” which is supposed to cause the observed acceleration of the universe. If we assume that w for dark energy, wDE, is constant, then the current observations suggest that (Komatsu, et al., ApJS, 192, 18 (2011)) wDE = −0.98 ± 0.05 (68% CL). (1.22) In other words, the energy density of dark energy is consistent with being a constant (wDE = wΛ = −1). Determining wDE with better accuracy may tell us something about the nature of dark energy, especially if wDE 6= 1 is found with high statistical significance, as it would tell us that dark energy is something dynamical (time-dependent). Ignoring a potential interaction between dark energy and other components in the universe (e.g., dark matter), the energy density of dark energy obeys (see equation (1.6)) ρ˙DE(t) + 3a˙(t) a(t) (1 + wDE) ρDE(t) = 0, (1.23) whose solution is ρDE(t) ∝ [a(t)]−3(1+wDE) . On the other hand, if we do not assume that wDE is a constant, then the energy density of dark energy obeys ρ˙DE(t) + 3a˙(t) a(t) [1 + wDE(t)] ρDE(t) = 0, (1.24) whose solution is ρDE(t) ∝ e −3 R d ln a[1+wDE(a)] . (1.25) Putting these results together, we obtain the Friedmann equation for our Universe containing radiation, matter, and dark energy (but not curvature) as a˙ 2 (t) a 2(t) = H2 (t) = 8πG 3 ρM(t0) a 3 (t0) a 3(t) + ρR(t0) a 4 (t0) a 4(t) + ρDE(t0)e −3 R a(t) a(t0) d ln a[1+wDE(a)] , (1.26) where t0 is some epoch, which is usually taken to be the present epoch.


Equation of State of “Dark Energy” and Density Parameters The matter has PM ρM; the radiation has PR = ρR/3; and Λ has PΛ = −ρΛ. This motivates our writing the equation of state of the ith component in the following simple form: Pi = wiρi . (1.21) Here, wi is called the “equation of state parameter,” and can depend on time (although it is usually taken to be constant). Why this form? It is important to keep in mind that there is no fundamental reason why we should use this form. This form is often used either just for convenience, or simply for parametrizing something we do not know. At the very least, this form is exact for radiation, wR = 1/3, and for Λ, wΛ = −1. For matter, since wM 1, the exact value does not affect the results very much. The equation of state parameter is almost exclusively used for parametrizing “dark energy,” which is supposed to cause the observed acceleration of the universe. If we assume that w for dark energy, wDE, is constant, then the current observations suggest that (Komatsu, et al., ApJS, 192, 18 (2011)) wDE = −0.98 ± 0.05 (68% CL). (1.22) In other words, the energy density of dark energy is consistent with being a constant (wDE = wΛ = −1). Determining wDE with better accuracy may tell us something about the nature of dark energy, especially if wDE 6= 1 is found with high statistical significance, as it would tell us that dark energy is something dynamical (time-dependent). Ignoring a potential interaction between dark energy and other components in the universe (e.g., dark matter), the energy density of dark energy obeys (see equation (1.6)) ρ˙DE(t) + 3a˙(t) a(t) (1 + wDE) ρDE(t) = 0, (1.23) whose solution is ρDE(t) ∝ [a(t)]−3(1+wDE) . On the other hand, if we do not assume that wDE is a constant, then the energy density of dark energy obeys ρ˙DE(t) + 3a˙(t) a(t) [1 + wDE(t)] ρDE(t) = 0, (1.24) whose solution is ρDE(t) ∝ e −3 R d ln a[1+wDE(a)] . (1.25) Putting these results together, we obtain the Friedmann equation for our Universe containing radiation, matter, and dark energy (but not curvature) as a˙ 2 (t) a 2(t) = H2 (t) = 8πG 3 ρM(t0) a 3 (t0) a 3(t) + ρR(t0) a 4 (t0) a 4(t) + ρDE(t0)e −3 R a(t) a(t0) d ln a[1+wDE(a)] , (1.26) where t0 is some epoch, which is usually taken to be the present epoch. 7 Now, taking t → t0, we find the present-day expansion rate H2 0 ≡ H2 (t0) = 8πG 3 [ρM(t0) + ρR(t0) + ρDE(t0)] ≡ 8πG 3 ρc(t0), (1.27) which has been determined to be H0 ≈ 70 km/s/Mpc. Here, ρc(t0) is the so-called “critical density” of the universe, which is equal to the total energy density of the universe when the universe is flat. The numerical value of the critical density is ρc(t0) ≡ 3H2 0 8πG = 2.775 × 1011 h 2 M Mpc−3 . (1.28) The critical density provides a natural unit for the energy density of the universe, and thus it is convenient to measure all the energy densities in units of ρc(t0). Defining the so-called density parameters, Ωi , as Ωi ≡ ρi(t0) ρc(t0) , (1.29) one can rewrite the Friedmann equation (1.26) in a compact form: H2 (t) H2 0 = ΩM a 3 (t0) a 3(t) + ΩR a 4 (t0) a 4(t) + ΩDEe −3 R a(t) a(t0) d ln a[1+wDE(a)] (1.30) Basically, most of the literature on cosmology (within the context of General Relativity) use this equation as the starting point.¶ Taking z = 0, one finds that all the density parameters must sum to unity: P i Ωi = 1. In summary, the Friedmann equation is a combination of two key equations: (1) the equation describing how the universe decelerates/accelerates depending on the energy density and pressure of the constituents, and (2) the equation describing the energy conservation of the constituents. Once the Friedmann equation is given with the proper right hand side containing the energy densities of the relevant constituents of the universe, we can find a(t) as a function of time easily. ¶An interesting possibility is that General Relativity may not be valid on cosmological scales. There are scenarios in which the form of the Friedmann equation is modified. One widely-explored example is the so-called DvaliGabadadze-Porrati (DGP) model (Dvali, Gabadadze & Porrati, Phys. Lett. B485, 208 (2000)). In this scenario, the Friedmann equation is modified to: H 2 (t) − H(t) rc = 8πG 3 X i ρi(t), where rc is some length scale below which General Relativity is restored. (For r rc, the potential is given by −GN m/r where GN is the ordinary Newtonian gravitational constant. For r rc, the potential is modified to −G5m/r2 and decays faster. G5 is the gravitational strength in the 5th dimension.) This model has attracted a huge attention of the cosmology community, as it was shown that this modified Friedmann equation gives an accelerating expansion without dark energy. Namely, even when the right hand side contains only matter, the solution for this equation can still exhibit an accelerating expansion. As this is a quadratic equation for H(t), we can solve it and find H(t) = 1 2 1 rc ± r 1 r 2 c + 32πG 3 ρM(t) . At late times when ρ(t) becomes negligible compared to the other term, one of the solutions is given by a(t) ∝ e t/rc , i.e., an exponential, accelerated expansion. 8 At present, the radiation is totally negligible compared to matter, ΩR/ΩM ' 1/3250, and the dark energy density is about 3 times as large as the matter density, ΩDE/ΩM ' 2.7 (with ΩM ' 0.27 and ΩDE ' 0.73). 1.4 Redshift As the universe expands, the wavelength of light, λ, is stretched linearly: λ(t) ∝ a(t), (1.31) which implies that photons lose energy as E(t) ∝ 1/a(t). This is something one can observe, by comparing, for example, the observed wavelength of a hydrogen line to the rest-frame wavelength that we know from the laboratory experiment. We often use the redshift, z, to quantify the stretching of the wavelength: 1 + z ≡ λ(t0) λ(temitted) . (1.32) The present-day corresponds to z = 0. Using equation (1.31), we can relate the observed redshift to the ratio of the scale factors: 1 + z = a(t0) a(temitted) . (1.33) Using this result in the Friedmann equation (1.30), we obtain the most-widely-used form of the Friedmann equation:
 H2 (z) H2 0 = ΩM(1 + z) 3 + ΩR(1 + z) 4 + ΩDEe 3 R z 0 d ln(1+z)[1+wDE(z)From this result, it follows that the best way to determine the equation of state of dark energy is to measure H(z) over a wide range of z. If we can only measure the expansion rates at z 1, then Taylor expansion of equation (1.34) with ΩR ΩM and ΩDE ' 1 − ΩM gives H2 (z 1) H2 0 ≈ 1 + 3ΩMz + 3(1 + wDE)(1 − ΩM)z. (1.35) As we know from observations that |1 + wDE| is small (of order 10−1 or less), the third term is tiny compared to other terms, making it difficult to measure wDE. This is why we need to measure H(z) over a wide redshift range

3 comentarii:

  1. Anomalies, however, are abundant. With a discrepancy
    of 5200 km/s “Stephan’s Quintet, a cluster of galaxies
    (NGC 7317-20), gives evidence that some redshifts may
    not be directly related to distance. The galaxies are still
    believed to lie at the same distance, which can be
    estimated from various indicators.” 8
    Another group,
    NGC 2903, similarly has an anomaly of 6000 km/s.

    RăspundețiȘtergere
  2. A useful expansion parameter may be calculated by
    first selecting the length that light can travel in one of our
    time intervals. For convenience, this would be a length of
    1 million lightyears (the distance a light pulse travels in
    the time of one million years).
    We know that this distance (sometimes called a
    comoving coordinate distance) increases by a fractional
    amount i every million years. The increase can be
    expressed as,
    ∆ distance = 1MLY × i ,
    then divide by our chosen time interval,
    ∆ distance / ∆t = (1MLY / 1MY) × i .
    The left side is simple the definition of average speed,
    and on the right side 1MLY ÷1MY is, by definition, the
    speed of light c, and can be replaced by 300,000 km/s.
    Thus,
    Speed of expansion = c × i .
    Finally we divide both sides by the length of 1MLY
    (alternately 1 mega-parsec favored by astronomers),
    which is the coordinate length that references the
    expansion:
    v /1MLY = (c i) /1MLY.
    The left side defines the expansion parameter. The right
    side is easily evaluated.
    Space expansion parameter = (c i) /1MLY (6-6)
    = 300,000 km/s × 0.00006226 /1MLY
    Space expansion parameter ≅ 18.7 km/s per MLY
    We have, in effect, determined the value of the space
    expansion parameter —known as Hubble’s ‘constant’ in
    conventional cosmology— by using the cellular structure
    of the Universe and the associated galaxy motions
    induced by aether dynamics.
    The Exponential Equations for Space Expansion
    Equation (6-1) above provides a simple, intuitive,
    approach to space expansion. The increment factor (1+ i)
    is applied repeatedly to the growing coordinate length in
    the same way that an interest factor is applied repeatedly
    to a growing monetary investment. The formal method is
    to use the expression for the relative rate of change of a
    co-ordinate length r with respect to time:

    dr/dt ÷ r = v ⁄ r = k , (6-7)
    where k is constant when space is expanding uniformly.
    The expansion is described by the ratio of the rate of
    change of a length divided by that length. Note that the
    value of k depends not on the length units, but only on the
    time units chosen. Constant k is simply our space
    expansion parameter with its length units cancelled out.
    Let us, then, replace k with the space expansion
    parameter (which we symbolize as H) and write the
    relative rate of change equation as,

    dr/dt ÷ r = v ⁄ r = H . (6-8)
    Now if we choose our units so that v is in km/s and r is
    in MLYs, then the expression could easily be mistaken for
    the Hubble term used in conventional cosmology. The
    identity confusion is but momentary; only until one
    realizes that ‘their’ Hubble expansion is applied to the
    entire visible universe, while our space expansion H is
    applied only within the confines of cosmic cells —the
    cosmic cells of a non-expanding universe

    RăspundețiȘtergere
  3. that it takes
    about 300 Gigayears (GY) of comoving expansion to
    convey a point, or test particle, starting one lightyear from
    the center of a void and ending at the interface
    150,000,000 lightyears from the center of the void. How
    long does it take to reach the halfway point at 75,000,000
    lightyears? Remarkably, it takes 290 GY for expansion to
    reach one half the radius of a full-size cosmic bubble.
    This leaves only 10 GY in which to expand the balance of
    the distance to the interface; and is achieved by a
    relentless increase in both the speed and acceleration of
    the outward space flow (caused by expansion). Obviously
    comoving expansion takes a very long time, both in
    relative and absolute terms. The prolonged slow
    expansion and almost negligible space flow in the central
    portion of a void, leads to an interesting possibility.
    Part of the DSSU theory of galaxy formation is
    described as follows: As space expands in three spatial
    dimensions and flows radially outward from the cosmic
    bubble’s central void, space accumulates matter by a
    formation process in which primitive matter emerges
    from the aether, from the fundamental fluctuators that
    constitute aether. The primitive matter grows and evolves
    —manifesting as conventional energy and mass particles.
    The important point here is that matter accumulation
    within the void depends primarily on time and
    consequently on radial position.
    Now if we divide the total expansion-flow time of
    300 GY (Graph 3) into two equal time periods along the
    full nominal radius: then 150 GY is spent along the first
    million lightyears of length (actually considerably less
    than one million lightyears, only 11,400 LY, using
    equation (6-1a)); and 150 GY along the much longer 149
    million lightyears, of the latter portion of the radius. In
    descriptive terms, it is as if space sits leisurely at the core
    of the void for 150 Gigayears and then spends another
    150 Gigayears expanding completely across the void (to
    the interface boundary). This is a disproportionate
    consequence of the ‘miracle’ of compounding or
    exponential growth!
    Back to the galaxy formation process. A vital quantity
    for determining the rate of galaxy formation is missing.
    What is the rate of matter formation and accumulation per
    unit of volume? Equivalently one may ask, how long does
    it take for a galaxy to form from pure vacuum energy and
    its derivatives? It could not possibly be a short time span
    —otherwise the voids would not be voids and would be
    filled with proto-galaxies and mature galaxies. It would
    have to be as long as possible. A reasonable assumption is
    that the time span of formation is not more than 150 GY.
    By the time a region of matter and energy accumulation
    reaches the interface it will have evolved into a full grown
    elliptical. This result is predictable and observable (only
    the evolution time is contentious but seems reasonable).
    If we accept this conservative time frame for the
    formation of galaxies in expanding and flowing space,
    and we recognize that the same time span (about 150 GY)
    and the same rate of space expansion occurs in the central
    core (approx. one MLY radius) of the void, we can
    reasonably surmise that galaxies also form, and even
    mature, in this region. It is possible that galaxy formation
    is great enough to sustain a small cluster of galaxies. The
    result would be a void core-region where expansion
    space-flow is actually radially inward. The geometric
    center of each void may actually be a region of net spacecontraction.
    Without knowing the rate of matter formation
    per unit of volume, the size and degree of contraction
    remains speculative.
    Full grown galaxies arriving at the interface is an
    observable fact; the existence of galaxies in the center of a
    cosmic-bubble void is an interesting idea and actually has
    been reported but not verified.

    RăspundețiȘtergere